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Abstract

Closed-form solutions for dynamic analysis of extensional circular Timoshenko beams with general elastic boundary
conditions are derived. Taking the Laplace transform and some procedures, the system composed of three coupled
governing differential equations and six coupled boundary conditions is uncoupled and reduced to a single equation in
terms of the angle of rotation due to bending. The explicit relations between the inward radial displacement, the
tangential displacement and the angle of rotation due to bending are revealed. Six exact normalized fundamental so-
lutions of the uncoupled governing differential equation are obtained by the Frobenius method. The exact transformed
general solution of the uncoupled system is expressed in terms of the six fundamental solutions, using the generalized
Green function given by Lin. The systems based on the Rayleigh and Bernoulli-Euler beam theories can be obtained by
taking the corresponding limiting procedures. Without the Laplace transform, the exact solutions for the steady and
free vibrations of the general system are obtained. The effects of the spring constants, the opening angle, the rotary
inertia and the shear deformation on the natural frequencies are investigated. © 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The vibration theory of curved beams has great importance in many engineering applications such as in
the design of machines, bridges and aircraft structures. Several research workers have studied the in-plane
vibration of curved beams. An interesting review of the subject can be found in the review articles (Laura
and Maurizi, 1987; Chidamparam and Leissa, 1993). So far, many studies have been published on the free
vibration of a curved beam with limiting boundary conditions. Little research has been devoted to the
forced vibration problem of curved beams.
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Wang and Lee (1974) introduced the dynamic slope—deflection method for the analysis of in-plane
forced inextensional vibration of a multispan circular Bernulli-Euler beam with fixed ends. Irie et al.
(1980) studied the steady state out-of-plane response of a free-clamped Timoshenko curved beam using
the transfer matrix approach. Wang and Issa (1987) studied the steady state in-plane response of a
clamped—clamped Timoshenko beam, subjected to a harmonic uniformly distributed load using the
dynamic stiffness matrix method. Silva and Urgueira (1988) studied the steady-state out-of-plane response
of a free—free Timoshenko curved beam by using the dynamic stiffness matrix method. Wang et al. (1992)
studied the steady-state out-of-plane response of a clamped—clamped multispan circular beam subjected
to a harmonic uniformly distributed load using the dynamic stiffness matrix method. Huang et al.
(1998a,b) derived the in-plane and the out-of-plane transient response of a hinged-hinged and a
clamped—clamped non-circular Timoshenko curved beams by using the dynamic stiffness matrix method
and the numerical Laplace transform. Till date, there is no study on the dynamic analysis of extensional
circular Timoshenko beam with general elastic boundary conditions, subjected to arbitrary external loads
and moments.

The purpose of this article is to derive the closed solutions for the dynamic analysis of an extensional
circular Timoshenko beam with elastic boundary conditions. The system composed of three coupled
governing differential equations and six coupled boundary conditions is transformed into a single
equation in terms of the angle of rotation due to bending. The explicit relations between the inward
radial displacement, the tangential displacement, and the angle of rotation due to bending are revealed.
The six exact fundamental solutions of the uncoupled governing sixth-order differential equation are
derived by the Frobenius method. By using the generalized Green’s function given by Lin (1998), the
exact general solution of the transformed system is derived. Lin obtained the exact solution for the static
analysis of extensional circular Timoshenko beams with general elastic nonhomogeneous elastic bound-
ary conditions by using a generalized Green’s function of a sixth-order ordinary differential equation with
forcing function composed of the delta function and its derivatives. Two systems based on the Rayleigh
and the Bernoulli-Euler beam theories are examined by taking the corresponding limiting procedures.
The effects of the spring constants, the opening angle, the rotary inertia, and the shear deformation on
the natural frequencies of beams are investigated. The stiffness locking phenomena accompanied in the
finite element methods do not exist in the proposed method (Lee and Sin, 1994; Yang and Sin, 1995;
Bucalem and Bathe, 1995).

Fig. 1. Geometry and coordinate system of a generally elastically restrained curved beam, subjected to the transverse and axial loads
and the external moment.
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2. Governing equations and boundary conditions
2.1. Curved Timoshenko beams
Consider the dynamic response of an elastically restrained extensional circular Timoshenko beam

subjected to any transverse forces, axial forces and external moments, as shown in Fig. 1. In terms of the
following dimensionless quantities,
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the dimensionless governing differential equations and boundary conditions are, respectively,
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W(x,t) and Ul(x,¢) are the tangential and the inward radial displacements, respectively, ¥(x, ¢) is the angle
of rotation due to bending, ¢ is the time variable, P(x,¢), O(x,¢) and M(x,?) are the applied distributed
transverse loads, axial loads and bending moments, respectively, E, G, x, I, J and 4 denote Young’s
modulus, shear modulus, shear correction factor, area moment of inertia, mass moment of inertia per unit
length and cross-sectional area, respectively, p is the density per unit volume; Ky, Ky and Ky, and Kyp,
Kyr and Ky are the radial translational spring constants, the tangential translational spring constants and
the rotational spring constants at 0 = 0 and 0 = «, respectively, R is the radius; L is the length of beam;
0 = EA is the extensional strength. The associated initial conditions are

W(«f, O) = Wo(f), aw(é> 0)/6‘5 = Wo(é)v (12)

where wy and Wy are two prescribed initial functions.

It should be noted that if the axial loads ¢(&,7) and the moment loads m(¢&,7) are neglected and the beam
is clamped at both ends, the coupled governing differential equations (2)—(4) and the boundary conditions
(5)—(10) become the same as those given by Wang and Issa (1987).

After taking the Laplace transform with respect to time variable 7, the governing differential equations
(2)—(4) become
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Replacing the original dependent variables {u, w, ¥} of Eqgs. (5)—(10) by the transformed ones {u, w, ¥},
the transformed boundary conditions are obtained.
By substituting Eq. (15) into Eq. (13), one can obtain

N 1 d i
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Multiplying Eq. (14) and the derivative of Eq. (17) by u/o and u({o* + s?)/a?, respectively, and adding the
two results yield
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The tangential displacement in terms of the angle of rotation due to bending is obtained by multiplying
Eq. (15) by u(us®/a*> — 1) and subtracting it from Eq. (18).

o f1d'¥ s &7 1 u 1 &m [ ps .
Mﬁ{ﬁd_fﬁ{l_ﬂ“”] a& [(E_”)” }\”? déz_(?‘ )’"
1 dp* 1,
T2 Al } (19)

Substituting Eq. (19) into Eq. (17), gives the following expression for the inward radial displacement in
terms of the angle of rotation due to bending:
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Substituting Egs. (19) and (20) into Eq. (15), the uncoupled sixth-order governing differential equation in
terms of the angle of rotation due to bending is obtained
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Substituting Eqs. (19) and (20) into the transformed boundary conditions yields the boundary conditions in
terms of the angle of rotation due to bending
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Letting the dimensionless extensional strength { — oo, the inextensional curved Timoshenko beam
system is obtained. The relation between the tangential and inward radial displacements is obtained from
Egs. (19) and (20)

— = o, (30)
which is well known (Laura et al., 1987).
2.2. Curved Rayleigh beams
For Rayleigh beams, the effect of rotatory inertia is considered and that of the shear deformation is
neglected. By letting = 0, the corresponding uncoupled governing differential equation and boundary
conditions can be obtained from Egs. (21), (22) and (23)—(29), respectively. The inward radial displacement

(20) and the tangential displacement (19) in terms of the angle of rotation due to bending are reduced to be,
respectively,
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Letting the dimensionless extensional strength { — oo, the inextensional curved Rayleigh beam system is
obtained.

2.3. Curved Bernoulli—-Euler beams

For Bernoulli-Euler beams, both shear deformation and rotatory inertia are neglected, i.e., 4 = 0 and
n=0. By letting u=0 and 5 =0, the corresponding uncoupled governing differential equation and
boundary conditions can be obtained from Egs. (21), (22) and (23)—(29), respectively. The inward radial
displacement (20) and the tangential displacement (19) in terms of the angle of rotation due to bending are
reduced to be, respectively,
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Letting the dimensionless extensional strength { — oo, the inextensional curved Rayleigh beam system is
obtained.
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3. Solution method
3.1. General solution

The general solution of the uncoupled governing differential equation (21) can be written as

(35)

where W,(¢) and {V;(&)} are the particular solution and the six linearly independent normalized funda-
mental solutions of Eq. (21), respectively, and {C;} are the constants to be determined. The fundamental

solutions satisfy the following normalized condition:
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Substituting the general solution (35) into the boundary conditions (23)—(29), the associated coefficients can

be obtained via the following relation:
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By taking the inverse Laplace transform, one obtains the transient response of the system

(37)

(38)
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1 c+joo _
- y ST 1
W =gs [ Fewerds ce), (39)
where j> = —1 and c is the constant associated with the inverse Laplace transform (Sneddon, 1972).

3.2. Normalized homogeneous solution

A power series representation of the fundamental solutions can be constructed by the Frobenius method
(Lee and Lin, 1992). One can assume that the six independent fundamental solutions ¥;(&) of Eq. (21) are in
the form of

V= kil i=12,..6, (40)
=0

for V1(¢): kio=1, kiyn=hkix=hkz=hka4=hks=0,

for 15(8): k=1, hky=kp=hkz=kys =kys=0,

for V3(8): kin =3 hko=k1 =hksz=kssa=h35=0, (1)
for V4(&): kaz =1 hkao=hsy = kap =hus =kss =0,

for V5(&): ksa =145, kso=hsy =ksy =ks3 =kss=0,

for V5(&): kes = 11%7 koo = ko1 = kep = ks3 = kea = 0.

These fundamental solutions satisfy the normalization condition (36). Upon substituting Eq. (40) into Eq.
(21) and collecting the coeflicients of like powers of &, the following recurrence formula can be obtained:

(C+A)H+3)+2)(L+ 1)gakivia + (€ +2)(L+ 1)qakioin + qokiy

Kievs = 16+ +H )+ +1) o £=01,2,.. (42)

With this recurrence formula, one can generate the six exact normalized fundamental solutions of Eq. (21).

3.3. Particular solution
The Green function of an nth-order ordinary differential equation with constant coefficients obtained by

Lin (1998) is applied to derive the particular solution of Eq. (21). The particular solution ¥, () expressed in
terms of the normalized fundamental solutions ¥;(¢) can be obtained:

v, =3 / PE(E — x)d, (43)
i=0 Y0

where

Ei(¢) = 15($H(E),
E5(8) = [Va(8) — qaVe(O)]H (S,

E3(¢) = [13(8) — qaV5(OIH (S)
in which H(¢) is the Heaviside function.
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4. Steady motion and free vibration

Consider the steady motion of a curved Timoshenko beam, subjected to harmonic excitations. The loads
are assumed to be in the form of

m((7) = m(¢) sinwr,  p(¢,1) = p(¢) sinwr,  ¢q((, 1) = ¢(¢) sinwr, (45)

where @ is the dimensionless frequency of excitation, i.e., @ = QL>\/pA/EI in which Q is the physical
frequency of excitation; then, the displacements and the angle of rotation due to bending can be written as,
respectively,

u(é,1) = u(&) sinmr, w(é 1) =w(é)sinwr, W(& 1) =P(¢) sinor. (46)
Substituting Eqs. (45) and (46) into Egs. (2)—(11), the corresponding governing ordinary differential

steady motion. Similarly, the associated explicit relations, the uncoupled governing differential equation,
the boundary conditions and the steady responses can be obtained by replacing the parameters
{s,m*,p*,q", @, w, ¥} in Eqs. (19)-(29) and (35)~(38) by {jm,m,p, G, i1, w, ¥}.

Consider the free vibration of the system. The Laplace transform parameter s of the forced vibration system
is replaced by jo where  is the dimensionless angular natural frequency, i.e., o = QL*\/pA/EI in which Q is
the physical angular natural frequency. Because the coefficients 4; of Eq. (37) are zero, the determinant of the
first square matrix in Eq. (37) is zero. Then, the frequency equation of the curved beam can be obtained

036 035 034 033 03 031

26 025 024 023 02 021

16 15 014 013 O o
Y1181 0 82 V1283 T84 V1285

V2286 V2187 V288 V2189 V20810 V2181
0 0 0 0 732 —Va1

=0. (47)

The roots of the frequency equation are the natural frequencies of the system.

5. Verification and discussion

The following examples are given to illustrate the validity and the accuracy of the analysis and study the
dynamic behavior of a curved beam.

Example I: Consider the free vibration of Timoshenko curved beams. The comparison of the presented
frequencies of the beams to those given by Wolf (1971) and Tufekci and Arpaci (1998) is made. Table 1
shows that the presented numerical results and those given by Tufekci and Arpaci (1998) are very consistent.
Tufekci and Arpaci (1998) derived the closed-form solutions for the free in-plane vibration of an extensional
circular Timoshenko beam with some limiting boundary conditions by the fundamental matrix method.

Example 2: Figs. 2—4 show the influence of the radial spring constant f8,, the tangential spring constant
fs, and the rotational spring constant f3; on the first four natural frequencies of the curved beams clamped
at £ = 0. The solid and the dashed lines denote the natural frequencies of a curved beam with the opening
angles o of 180° and 60°, respectively. Fig. 2a and b shows that when the constants f5 and f, are zero and
the constant f3, is decreased to a certain value, the natural frequencies will approach constant values. This
means that the spring constant is seen to be zero and the beam is free at ¢ = 1. Moreover, when the spring
constant is increased to a certain value, the natural frequencies approach constant values. This means that
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Table 1
The dimensionless frequencies of Timoshenko curved rectangular beams [1/(2/77) = 100, v = 0.3, k = 5/6, { = 1/, p = 2(1 4 v)n/x]
o Mode Hinged-hinged Clamped-clamped
Wolf (1971) Tufekci and Present study  Wolf (1971) Tufekci and Present study
Arpaci (1998) Arpaci (1998)
150° 1 26.43 26.4079 26.4079 47.66 47.5326 47.5326
2 72.71 72.5587 72.5588 99.32 98.8691 98.8697
3 143.1 142.5925 142.5931 182.4 181.2108 181.2114
4 229.2 227.9351 227.9352 274.0 271.5375 271.5344
5 339.2 336.4950 336.4755 396.8 391.9823 391.9637
180° 1 22.37 22.3497 22.3497 43.25 43.1709 43.1709
2 68.27 68.1644 68.1644 95.06 94.7557 94.7559
3 137.8 137.4288 137.4288 176.5 175.7111 175.7105
4 224.6 223.7427 223.7416 270.2 268.4875 268.4864
5 334.0 332.0705 332.0712 391.1 387.7377 387.7465

the spring constant is seen to be infinite and the beam is radially hinged at £ = 1. When the rotary inertia
and the ratio between bending and shear rigidities are large, the influence of the opening angle « on the
natural frequencies of higher modes is greater than on those of lower modes.

Fig. 3a and b shows the influence of the tangential spring constant 55 on the frequencies of a beam
clamped at ¢ = 0 and radially hinged at £ = 1. When the rotary inertia and the ratio between bending and
the shear rigidities are large, the influence of the tangential spring constant i on the second and third
frequencies of a beam with the opening angle « of 60° and the fourth frequencies of a beam with the
opening angle o of 180° is small. The reason is that the corresponding mode shapes are dominant in the
inward radial displacement. Fig. 3b shows that when the rotary inertia and the ratio between bending and
shear rigidities are small, the influence of the spring constant f5 on the natural frequencies of higher modes
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Fig. 2. The influence of the translational spring constant 8, on the first four frequencies of a cantilever curved beam: (a) fi5 = ¢ = 0,
n =0.001, { = 1000, = 0.00312; (—) oo = 180°% (- - -) o = 60°. (b) f5 = s =0, n = 0.00001, { = 100,000, p = 0.0000312; (—)
o= 180° (- - -) o = 60°.
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Fig. 5. The amplitudes of steady response at the right end of the cantilever curved beam subjected to a harmonic transverse load at
¢=10.5,1n=0.001, { =1000, & = 0.00312; (—) a = 180°; (- - -) a = 60°.

is greater than on those of lower modes. Fig. 4a and b shows that the influence of the rotational spring
constant f§s on the natural frequencies of the beams hinged at £ =1, i.e., ff, and 5 — oo, is small.

Example 3: In Fig. 5, the vibrational response curve at the tip of the cantilever curved beam is illustrated.
It shows that when the transverse harmonic excitation frequencies approach the natural frequencies of the
beam, the response increases rapidly and becomes infinite as the transverse harmonic excitation frequencies
coincide with the natural frequencies.

6. Conclusion

In this article, the closed-form solutions for dynamic analysis of extensional circular Timoshenko beams
with general elastic boundary conditions are obtained. The explicit relations between the inward radial
displacement, the tangential displacement and the angle of rotation due to bending are revealed. The
uncoupled equation expressed in terms of the angle of rotation due to bending is obtained. The six exact
normalized fundamental solutions of the characteristic governing differential equation is obtained by the
Frobenius method. The general solution of the system in terms of the six fundamental solutions is obtained
by using the generalized Green function given by Lin (1998). Two systems based on the Rayleigh and
Bernoulli-Euler beam theories are easily obtained by taking the corresponding limiting conditions.
Moreover, the exact solutions for the steady and free vibrations of the systems are obtained.
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